
Generic VNF Configuration Management
and Orchestration

Why telco’s are finally taking the cloud seriously

Why things are changing

The telecommunications
industry is in a state of
disruption.

The old way of doing business
doesn’t work as well in a
cloud-based ecosystem.

Network appliances are going
the way of the non-avian
dinosaur.

It’s time to evolve.

Welcome to Network Function
Virtualization (NFV)

NFV management and organization (MANO)
An ETSI working group

NFV Orchestrator VNF Manager Virtualized Infrastructure
Manager

Manage Network Services,
VNF packages, and global
resources.

Lifecycle and configuration
management of VNF
instances.

Manage compute, network,
and storage resources. This
is the cloud layer.

NFV Mano Implementations

Generic VNF Managers (VNFM)

Tacker

Virtualization Infrastructure Managers
Virtualization and hypervisors

LXD
OpenVIM

Carriers using Juju for generic VNF manager

Diving in to Network Function Virtualization
(NFV)

Network Appliances dissected

● Big, beefy hardware

● Expensive

● It’s a black box

● Only scales horizontally

● Vendor lock-in

● Monolithic

Load Balancer

Network Function Virtualization explained

Network Function Virtualization (NFV) virtualizes specific classes of
network functions into reusable components.

Network Function Virtualization executed

How VNFs are created

Breaking it down

● A series of scripts that react to a lifecycle event,
such as install, start, and stop

● Compatible with existing config management, such
as puppet, chef, ansible, docker, etc.

● Built in “layers” so common functionality can be
shared and reused.

VNF Packages and Descriptors

Breaking it down

● Integrate with things you need to work with

● Encapsulate protocol, reducing the pain of

interoperability

● Take advantage of a vendor’s operational knowledge

of their application

Integrations

Breaking it down

├── charm
│ └── pingpong
│ ├── actions.yaml
│ ├── config.yaml
│ ├── layer.yaml
│ └── metadata.yaml
├── icons
│ └── ping_logo.png
└── ping_vnfd.yaml

The VNF package

Breaking it down

Lifecycle:

● config-changed
● install
● leader-elected
● leader-settings-changed
● start
● stop
● upgrade-charm
● update-status

Event Driven

Relation:

● [name]-relation-joined
● [name]-relation-changed
● [name]-relation-departed
● [name]-relation-broken

Storage:

● [name]-storage-attached
● [name]-storage-detached

Metrics:

● collect-metrics

Breaking it down

@when_not('load-balancer.installed')
def install_load_balancer():
 # Validate license & install
 license = config[‘license-key’]
 if valid_license():
 download_packages()
 verify_packages()
 install_packages()
 set_flag('load-balancer.installed')

Implementation - Python example

Orchestration

Putting it together
Transform a monolithic appliance into a scalable application.

Putting it together
Advanced Features

libjuju
● asynchronous Python library,
● drives Juju via it’s websocket API.
● (example) how to dynamically auto-scale up or down based on the

performance metrics of your application, and auto-healing.

Libjuju talk today!,
● Tim Van Steenburgh: Operator Track: Driving Juju with Python Monday,

February 6, 17:00 in room B4.039

https://github.com/juju/python-libjuju

Putting it together
Deploying via CLI

juju deploy load-balancer
juju deploy postgresql -n 3 --constraints mem=8G
juju deploy nagios
juju deploy logstash

juju add-relation load-balancer postgresql
juju add-relation load-balancer nagios
juju add-relation load-balancer logstash
juju add-relation postgresql nagios
juju add-relation postgresql logstash

Putting it together
Scaling

Horizontally:
$ juju add-units load-balancer -n 2

Vertically:
$ juju deploy postgresql -n 3 --constraints mem=16G

Remove 8GB Nodes:
$ juju remove-unit postgresql/0 postgresql/1 postgresql/2

Managing complex configurations

Application-level configuration

juju config set load-balancer max_connections=2048

or

juju config set load-balancer --file=lbconfig.yaml

VNF Configuration

Summary

Open Source carrier-grade tools you can use.

● Scale horizontally and/or vertically
● Auto-scaling
● Auto-healing
● Drive by CLI, GUI or API
● Cross-platform - Ubuntu, Centos, Windows, OS X
● Cross-architecture: i386, AMD64, ARM64, Power, S390X
● Used by many MANO implementations

Open Source carrier-grade tools you can use.

Get started:

juju deploy cs:~aisrael/netutils/

Or try out my work-in-progress Asterisk VNF:

juju deploy cs:~aisrael/asterisk-0

https://github.com/AdamIsrael/layer-netutils

http://github.com/AdamIsrael/layer-asterisk

Thank you!

Adam Israel
adam.israel@canonical.com
http://github.com/AdamIsrael

mailto:adam.israel@canonical.com
mailto:adam.israel@canonical.com

Demo?

Afterthoughts

● Speak louder, annunciate more.
● Stick to the script. Every time I went off-script I ended up mumbling or

rambling.
●

How could I have been a better presenter?

Breaking it down

deploy-service:

 description: "Deploy a service to be load-balanced."

 params:

 service-template:

 type: string

 description: "The template for the service."

 service-name:

 type: string

 description: "The name of the service."

actions.yaml

Breaking it down

options:

 max_connections:

 default: 4096

 type: int

 description: |

 Sets the maximum per-process number of concurrent
connections to

 <number>.

config.yaml

Breaking it down

includes:

 - 'layer:basic'

 - 'layer:sshproxy'

options:

 basic:

 packages: ['python-heatclient', 'python-glanceclient']

layer.yaml

Breaking it down

name: load-balancer

summary: A mock load-balancer application, for demonstration
purposes only.

maintainer: Adam Israel <adam.israel@canonical.com>

Description: “This is an example of packaging a VNF

tags:

 - cache-proxy

subordinate: false

series:

 - centos7

 - xenial

metadata.yaml

Breaking it down

#!/bin/bash

set -eux

license = $(config-get license-key)

if [validate_license()]

then

 download_packages() && validate_packages() && install_packages()

 exit 0

fi

exit 1

Implementation - Bash

Putting it together
Scaling

Horizontally:
$ juju add-units load-balancer -n 2

Vertically:
$ juju deploy postgresql -n 3 --constraints mem=16G

Remove 8GB Nodes:
$ juju remove-unit postgresql/0 postgresql/1 postgresql/2

Bringing it together

● are YAML-formatted
● defines the integration between applications
● defines machine placement
● defines initial resource requirements

 Deploying a bundle of applications is easy:

juju deploy mybundle.yaml

Bundles

